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DETERMINATION OF THE HEAT DISSIPATED FROM A
SPECIMEN UNDERGOING CYCLIC PLASTICITY BY A

HYBRID NUMERICAL/EXPERIMENTAL METHOD

INTRODUCTION

'-Vhen a metallic specimen is deformed plastically, the bulk of the irreversible work is dissipated
in the form of heat. It is generally accepted that the remaining part of the input energy is consumed
by the change in the material's internal energy. Such internal energy changes can be attributed to
phase changes, development of residual stresses, translation of dislocations; and the creation and/or
enlargement of internal surfaces such as voids. Recent interests in deformation heating have primarily
been motivated by metal forming processes where the substantial heat generation greatly influences
the formability4e-g , [1]-13)). However, the role of deformation heating in fatigue has also attracted
some attention. -

1. _. l I
The earliest study on the energy dissipated by an oscillating solid was perhaps by Lord Kelvin

[4]; 'who deduced that "dissipation of energy is an inevitable result of every change of volume."
Other early studies include Hopkinson and Williams [5], and Haigh [6]. By using an extremely sensi-
tive extensometer to measure the length of steel rods which had undergone complete and equal static
load reversals, the authors in [5] found that even in the "elastic" regime, a minute permanent defor-
mation was detectable. From this, they estimated the size of the stress-strain hysteresis area and thus
the irreversible work. Using temperature measurements of similar specimens under fatigue load, they
estimated that the heat dissipated is approximately 80% of hysteresis energy measured statically. The
cause of this discrepancy was thought to be due to the fact that one test was done statically while the
other was performed dynamically.

As mentioned earlier, we now know that the difference between the heat dissipated and the hys-
teresis energy is a real physical phenomenon which is associated with the change in energy state of
the material. Consideration of the first law of thermodynamics quickly leads to the fact that if W is
the irreversible work rate, and Q the heat dissipation rate, then for negligible kinetic effects, the rate
at which energy is being accumulated within the material U is given simply by

& = W -Q. (1)

It is clear that a material cannot sustain an indefinite accumulation of energy. It has been proposed
that U(= i U" dr) may be vieA. i . a "damage-energy," and that failure would occur when U
reaches some critical value U (see 7 '81, and references within). The consequence of the existence
of U can be enormous. If it can - established that U is indeed a material constant which is
independent of loading and specimen geometry, then it could in principle be used for monitoring the
residual strength of a component in service.

While this concept is elegantly simple, the determination of U (or U for that matter) is more
complex. In a comprehensive survey on the determination of stored energy of cold worked metals,
Bever et al. [9] identified two basic techniques (Single-step and Two-step methods) used to determine
the energy stored in a cold worked metal. For the Single-step method, the work of deformation and
heat dissipated (generally inferred from temperature measurements) are simultaneously monitored, and
the stored energy is determined from the difference of these two quantities. Because such procedures
involve the difference between two similarly sized quantities, it was shown that small relative errors
Manuscript approved February 27. 1990.



in each of the measurements can lead to large errors in the final result. For the Two-step methods,
the stored energy is found by calorimetric means where the thermal response of the cold-worked
specimen is compared to that of a virgin specimen. Although such methods also involve differences,
those which incorporate a differential approach can eliminate a certain degree of systematic errors.
However, since measurements in such techniques are taken after the deformation, they could not
account for the stored energy that may be released immediately after the deformation. Further, in
applications to fatigue, while U, may in principle be obtained with this technique, it could not be used
to monitor the accumulation of U of a component in service.

In this light, the Single-step approach is adopted in this current work, with the realization that
precise measurements of both W and Q are necessary. While W may be easily and accurately deter-
mined from load-displacement data, accurate measurements of Q are much more difficult to achieve.
Most existing experimental methods are based either on the use of an electrically heated calibration-
specimen for matching the temperature measurements with those of the actual fatigue specimen (e.g.,
[51,[81,[10]), or by direct calculation of the heat passing out of the specimen from temperature meas-
urements either on or outside of the specimen gage section (e.g., [61, [7] and [11]). However, all
these methods require elaborate experimental setups and cannot adequately account for any transient
effects. Indeed, most of the above-mentioned works were careful in stating that steady state condi-
tions are required.

Rantsevich and Franyuk [12] proposed an experimental/analytical solution for calculating the
thermal energy losses from a cyclically loaded specimen. It was shown that by knowing temperatures
at two locations on a specimen, the steady-state diffusion equation may be solved for the source term
by assuming symmetry and isothermal boundary conditions. In a later paper [13], Rantsevich esta-
blished conditions for steady and quasi-steady assumptions so that certain transient problems may be
solved incrementally. However, the restrictions on symmetry and isothermal conditions appear too
severe and would not be applicable in real tests.

In this paper, a hybrid numerical/experimental technique for determining the heat dissipated by a
cyclically loaded specimen is presented. Treated as an inverse problem, the one-dimensional diffu-
sion equation is solved for the source term numerically. The customary boundary conditions used in
the direct problems are replaced by a least squares criterion on the numerical temperature profile to
fit the measured temperature profile at discrete time intervals. A stable scheme is formulated using
the method of Lagrange multipliers and finite difference approximations. Because this method is
independent of the temperature boundary conditions and thus the amount of heat escaped via the
grips, standard testing equipment may be used with only minimal requirement for insulating the test
section of the specimen to prevent convective heat loss.

NUMERICAL PROCEDURE

In general, the temperature field of a solid body under load is a function of the deformation state
and the presence of any internal and external heat source and/or sink. The coupling between tem-
perature and deformation is attributed to the thermoelastic effect, and the representation of plastic
energy as internal heat sources. Because our interest is in the temperature variation from cycle to
cycle, and not on its fluctuation within each cycle, the heat transfer problem can be greatly simplified
by considering temperatures which are averaged over one complete cycle. Since the specimens under
consideration are thermally insulated round bars which may be considered thermally thin (Biot
numbers < < 1), the thermal response may be described by the one-dimensional diffusion equation:

- a - L (2)
agt x 2  PC
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where

0 = temperature averaged over one cycle (K),

a = {k/pCI = thermal diffusivity (m2/sec)

k = material heat conductivity (J/m-sec-K),

p = density (kg/m 3) ,

C = specific heat (J/kg-K),

q = heat generation rate (J/m3 -sec).

Equation (2) is usually solved as a direct problem in which given the source tern q. the tem-
perature field is solved subject to certain initial and boundary conditions. In the present proulef-,
however, the objective is to find q (=Q) such that the temperature field best fit the measured data.
Because an analytical form of q is not expected, a numerical approach to this problem was adopted.
Equation (2) may be rewritten in the Crank-Nicolson finite difference form [14], viz:

Sa ( +1 - 201 + 0i -1 + 0 1- - 20 " + Of-) = (3)
2 AX 2  

pC

where the subscript i and superscript t indicate positional and temporal locations respectively, Ax is
the linear mesh size, and At is the time-marching interval. Since the range of strains considered are
much lower than those necessary to cause necking, uniform plastic deformation is expected. Hence,
the heat source q (averaged over At) is assumed to be a function of time only.

Equation (3) may be rewritten as

Of_ 1 + AO + 0+ 1 = Bq + Ci, (4)

in which

A = -2 1 + A J

Ax2

aB=-2 ,

Ci = -0e2 + 2 L i At 0 1 - +l"
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We now need to define an objective function for which q may be solved given some measured
temperature data. An obvious choice is a least-squares criterion on the difference between measured
and computed temperature profiles. At time t, let there be measured temperatures T at nodes j. The
solution q is one which minimizes

S = (Tj - 0j)2.  (5)

That is, the solution must satisfy

aS a2 S
= 0, and -L > O. (6)

a3q aq 2

One apparently straightforward approach would be to solve Eqs. (4-6) iteratively by the algo-
rithm listed below.

1. Assume an initial value for q.

2. Solve for the temperature field directly.

3. Evaluate S using Eq. (5), and estimate q such that (6) will be satisfied.

4. Repeat steps 2 and 3 until Eq. (6) is satisfied within some specified tolerance.

However, this is relatively inefficient. Furthermore, the solution of Eq. (4) requires the assignment
of temperature boundary conditions. Although other researchers have assumed either adiabatic or
isothermal boundary conditions for solving similar direct problems (e.g., [2],[3]), it was apparent in
our preliminary tests that neither assumption is valid. One alternative would be to use the measured
values as boundary conditions. However, this would impose unnecessary bias to the end points,
implying no measurement errors at these locations.

The above problems may be overcome by using the method of Lagrange multipliers. Treating
Eq. (4) as constraints to the minimization of Eq. (5), we write the function X:

X = .[(T - 0,) 2 6, + X,(0I + AOi + Oi+1 - Bq - Ci)], (7)

where

10 when T exists,
i to when T does not exist

and

i= Lagrange multipliers.

Note that 0i is defined so that measured data T are not required for all i. For the solution to exist,
we require

4



ax- = o i =2...N- 1,

8(8ax =0 i =I .. N, (8)
aOi

ax 0.
aq

The expansion of Eqs. (8) results in the following linear set of equations:

I A 1 -B 01 C 2

I A 1 02 C 3

6 N-I
I A I -B ON CNI (9)

26 1 2 261 T1
262 A 1 X3 2&2 T2

263 1 A I

IA I
I 1 A XNI 26NTN

21 q 0
Ill. *1

where all blank spaces of the above matrix are zeros. Noting from Eq. (9),

2 6101 + X2 = 26,T,

2 6NN + XN-1 = 2 6NTN (10)

and with the solution region confined to the section bounded by the two outermost RTDs, so that

= 1 (11)

we have

k22= T - 2'(12)

XN -1t

ON =T 2
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Substituting Eq. (12) into Eq. (9) results in

[MIx] = Ly), (13)

where

A 1 I -1/2 -B
1 A l

1A 1 I
1 A -1/2 -B

[M] 252 A 1 (14a)
263 1 A

I A 1
26N 1 A

• I- 1.. 1

02 C 2 - T,
03 C3

ON-I CNI - TN
x j - (14-) - (14c)

X2 LY} 1 262 T 2
263 T3

XN - I

q 26N-ITN-I
0

The solution for 0i and q may thus be obtained by solving Eq. (13) for x.

A FORTRAN program was developed for solving Eq. (13) on a 16 bit microcomputer. The
sparseness of the matrix [M] was not exploited, and Gaussian elimination was used in its inversion for
sake of simplicity. Double precision was used throughout, and the conditioning of [M] was checked
and found to be satisfactory. A uniform mesh of 16 intervals was used for the 40 mm (1.575 in.)
gage section of the specimen. This was selected so that the measured temperature locations are coin-
cident with the finite difference nodes. A marching time step was set at 0.2 times the interval for
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which experimental data were available. For the 1 Hz tests, this was equivalent to a time step of 0.2
sec for the first 50 seconds, and then 2 seconds thereafter. The required measured values (T,)
between data points were obtained by interpolation. Mesh refinements were performed on several
runs and the selected meshes were found to be adequate.

EXPERIMENTAL PROCEDURE

Testing

The tests were performed under fully reversed sinusoidal uniaxial loading in a closed loop ser-
vohydraulic testing machine operated in strain control. Two frequencies (I Hz, 4 Hz) were con-
sidered. Temperature and load-strain data were obtained continuously for the first fifty cycles and for
every tenth cycle thereafter. Alignment of the cross heads was check before each test. A block
schematic of the testing setup and associated instrumentation is shown in Fig. 1. A microcomputer
was used to control the test and instrumentation.

Specimens were 15.88 mm (.625 in.), and 19.05 nmn (.75 in.) diameter off the shelf bar stock
aluminum 6061 - T6. No machining or specimen polishing was performed before testing. Speci-
men length from grip to grip was approximately 63.5 mm (2.5 in.) and the strain was measured over
a 50.8 mm (2.0 in.) gage length. Prior to each test, the thermal connection of the temperature
measuring devices was examined by applying an external heat source to the bar on one end and deter-
mining the resulting internal source term q numerically. Since there was actually no internal source,
q should be vanishing. For all cases the internal source term obtained was less than 0.01 MW/m 3

(0.268 BTU/ft3-sec), and the mean standard error of the measured temperature from the numerically
calculated value was less than 0.01 K. This was considered satisfactory as the manufacturer's specifi-
cation on the RTD accuracy was of this order.

Temperature Prorde Measurement

The temperature profile of the specimen was measured by 9 platinum resistance temperature
detectors (RTDs). The dimensions of the RTDs were 2.3 mm x 2 mm and 1 mm thick (0.091 in x
0.079 in. x 0.039 in.). For the range of temperatures measured there exists a linear relation
between resistance and temperature [15] given by

R = 0.385 T + 100, (15)
where

T = temperature (*C),

R = resistance (f0).

The 9 RTDs were placed over a 40 mm (1.575 in.) length, and a thin layer of silicone paste was
used to ensure good thermal contact with the specimen. The thermal conductivity of the paste was
extremely high i.e. 140 J/m-sec-K (16 BTU-in/hr-ft2-°F) [16]. The position and the scan sequence
for the RTDs for both frequencies are shown in Figs. 2a and 2b. To minimize convection losses, the
specimen was wrapped with fiberglass insulation.

7



The resistance of the RTDs was determined by using 4-wire ohm measurements. The tempera-
ture dat," Aere obtained by an ;ntegrated data acquisition unit (DAU # 1) consisting of a 6.5 digit
intepP-I'ag voltmeter, a 20 channel FET multiplexer with a maximum scan rate of 5500 channels/sec,
a rP,-er with a resolution of 1 Asec, and memory storage. The integration time for each voltage meas-
urement was 0.1 power line cycle (60 Hz). The RTDs were-scanned in sequential order as shown in
Fig. 2a, 2b to minimize bias toward one end.

Since the integration time was shorter than the completion of a 60 Hz cycle, the measurements
obtained were susceptible to power line noise. Therefore, a sampling rate was chosen to capture the
alternate rise and fall of the 60 Hz noise and its effect could thus be eliminated upon averaging. This
may be optimized by setting the sampling interval for each channel to (N + 1/2) • Tp, where N is an
integer, and Tp is the period of the power line noise. With the available equipment, N = 2 was
chosen to give a maximum sampling rate of 24 scans/sec for 1 Hz and 6 scans/sec for 4 Hz.

Measurement of Hysteresis Energy

The hysteresis energy is given by the cyclic integral of the engineering stress and strain. The
load and strain data were obtained by a separate data acquisition unit (DAU # 2) with two high speed
A/D 12 bit voltmeters and a high speed memory storage. The load range was set so that 9000 N
(2000 lbf) corresponded to a 1 volt output signal. The strain data were obtained with an extensometer
with a 50.8 mm (2.0 in.) gage length and calibrated so that a I volt output signal corresponded to
0.4% strain. Fifty data points per cycle were taken and the voltmeters were triggered by an external
pulse occurring at the beginning of each cycle from a function generator driving the test (see Fig. 1).
The start of cycle pulses were also recorded by a counter contained in DAU # 2. The data were
stored in memory and later transferred to a computer for calculation of the hysteresis energy by
numerical integration.

System Time Constant

The RTD response may be described by as a first order system and thus exhibits a time lag to
an external stimulus. The system time constant was determined by attaching a RTD to a specimen
similar to those to be tested, and examining its response to an applied cycling elastic load. The ther-
moelastic response of the specimen may be predicted from Kelvin's law for adiabatic conditions

AT = -KT Arij, (16)

where

Auii = cyclic amplitude of the first invariant of stress (N/m 2 ),

K = thermoelastic constant (m2 / N),

T = absolute temperature (K),

AT :- cyclic temperature amplitude (K).

8



The time constant 7 may be determined from the measured amplitude and the amplitude
predicted by Kelvin's law

T -l1 (17)

where

TM = measured response (K),

TE = predicted thermoelastic response (K),

11 = excitation frequency (sec- -I).

The time constant may also be obtained independently by examining the phase lag 4 between the
applied load and the thermoelastic response signals as given by

tan 4. (18)

Using a lock-in-amplifier to measure the amplitude and the phase lag of the thermoelastic
response, the time constant was determined to be less than 0.2 sec. by both equations 17 and 18.
Numerical simulations indicated that such time response had no significant influence on the determina-
tion of the heat conversion efficiency for the tests considered.

RESULTS AND DISCUSSION

Simulated Tests

To test the inverse diffusion solution schemne, a direct problem was first constructed and solved
using the Crank-Nicolson finite difference scheme. Various fictitious, but representative, time-
dependent heat source terms, as well as asymmetric time-dependent Dirichlet boundary conditions
were tested. At I sec intervals, the temperatures at the 9 corresponding RTD positions were
extracted from the direct solutions. To simulate actual experimental data, two types of errors were
added to the numerical outputs. Systematic errors were simulated by a (< : 0.1 K) random offset
fixed for each RTD throughout the run and random errors associated with instrumentation noise were
modeled by a < *0.1 K signal updated at each time increment.

The simulated RTD data were then used as input data in the inverse program. After several
runs, it was found that the absolute errors in the computation of Q were relatively independent of Q.
This means that the relative accuracy would improve with increases in Q. It was also noticed that
while the random noise determined the size of the scattering of Q about the mean from increment to
increment, the random offsets produced a scatter of the mean about zero from run to run (given dif-
ferent seeds for the random errors). From these runs, it was found that for the material chosen, and
the above specified temperature measurment errors, Q may be determined from the inversion pro-
gram to the order of 0.01 MW/m 3 (0.268 BTU/ft3-sec).
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Actual Tests

The results of the simulated runs effectively established the resolution of our proposed inverse
scheme and helped in deciding on the strain ranges suitable in the actual fatigue tests. Since the heat
dissipated was expected to be near the hysteresis energy, the strain ranges: i 0.522% to : 0.773% at
1 Hz and :E-0.375% to 4-0.571% at 4 Hz were selected to ensure a hysteresis energy rate of at least
of the order of 1 MW/m 3 (26.75 BTU/ft3-sec).

All tests were run to complete fracture. Since the bar stock specimens lacked any transitional
section, fracture occurred invariably at the first grip indentation of one of the grips. No apparent
preference to either the fixed or moving grip was noticed. Results for a typical 1 Hz run and 4 Hz
run are shown in Figs. 3-12. Figures 3 and 4 show the development of both measured and computed
temperatures at the center and ends. Temperature profiles at three different times are also shown in
Figs. 5 and 6. It can be seen that excellent agreements between the experimental and computed tem-
perature profiles were achieved. The mean standard error (MSE) was calculated at each increment,
and for all the specimens tested, the maximum MSE ranged from 0.02 K to 0.16 K. Such excep-
tional agreement validates the assumption of uniform heat dissipation along the length of the speci-
men, and reinforces confidence in its solution.

The general rise of the end RTD readings warrants some comments on the treatment of boun-
dary conditions by other analytical and numerical models. When solving the direct problem, most
assume isothermal boundary conditions based on the argument that the grips act as infinite heat sinks.
However, it is clear from our measurements (extrapolating to the grips located at approximately 10
mm from the end RTD's) that such assumptions are not valid. No such assumptions were made in
the present analysis.

Another interesting feature of the temperature histories is the rapid rise of temperature at one
end relative to the other just prior to failure. The fact that this hotter end was found always to be the
fractured end suggests that this rapid increase must be associated with the initiation and subsequent
growth of the crack since the intense crack-tip plastic deformation acted as a large external (i.e., out-
side the gage length) heat source. It is interesting to note that in a series of fatigue tests on steel,
Rantsevich [13] showed that by analyzing temperature data near the "vulnerable zone," the detection
of crack initiation can in fact be made much earlier than the magnetic method used in his tests.

Figures 7 and 8 show the comparison of the computed values of W and Q. For all cases stu-
died, the energy rates showed three distinctive regimes: a brief but rapid developing segment at the
start, followed by a steady intermediate region and finally another rapidly changing section prior to
complete fracture. The appearance of these three regimes was also found by Haigh [6], who referred
to them as the primary, secondary and tertiary stages, and attributed the behavior as a material
characteristic. However, after careful examination of the strain histories from the current tests, we
concluded that this was more closely associated with the characteristics of the testing machine.
Despite testing under strain control, the testing machine used was unable to maintain a strictly con-
stant strain, particular at the higher frequency (4 Hz). Even for the 1 Hz tests where the strain his-
tory appeared relatively constant, a plot of the square of the strain history (since near the elastic limit,
the hysteresis energy is roughly proportional to the square of the strain) revealed the three distinct
stages resembling those of the hysteresis history.

The fact that the hysteresis level was not maintained constant throughout the tests posed no great
problem to our present analysis as steady state conditions were not required. In general, Q was found
to range between 85% to 95% of W. Invariably, the heat conversion efficiency, defined as QIW,
started at a lower level and then gradually rose to a level or near-level plateau (see Figs. 9 and 10).
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At first, this was thought to be due to an insufficient RTD time response rate. However, an analysis
based on the measured time constants (see experimental procedure) showed this effect to be negligi-
ble. Another indication of a sufficient response time was the fact that there was a good correlation
between the fluctuations of W and Q during the transient state (see inset in Fig. 8). Since W and Q
were obtained by independent means, such good correlation also serves to suppor the correctness in
the calculation of Q. The results therefore suggest that the absorption of energy (U) is greatest at the
beginning of test, and thus confirming the notion that the accumulation of damage is greatest at the
start of cycling. For most cases, Q diverged from W in the tertiary stage. The direction of diver-
gence (i.e., whether Q < W or W < Q) appeared unpredictable. Since this tertiary stage invariably
corresponded to the divergence of the end RTD readings, indicating crack initiation and propagation,
increasing bending must have been present so that the extensometer data could not have truly
represented the average strain of the specimen. This in turn would have led to an erroneous calcula-
tion of W. Because of the uncertainty in the determination of W in this region, it was decided to
exclude it from the current analysis. In other words, we define failure to be the moment at which
sub-critical crack growth becomes detectable as opposed to the more conventional definition of gross
specimen fracture. For our test results, this corresponded to the time at which one end RTD reading
diverged from the other.

The total hysteresis energy W, and the total absorbed energy U up to the point of crack initia-
tion N, for all the specimens considered are presented in Fig. 11. While W, shows a high depen-
dency on Nc, U appeared to be relatively constant over the cycle range tested. However, in order to
confidently establish that U, is a strict constant, more tests are needed where a broad cycle range is
considered and the scatter reduced. The use of higher frequency loads would permit the heat dissi-
pated to be measured at lower loads and thus higher N. The use of properly designed specimens (as
opposed to the round-bar stocks used in the present work), more temperature measurement stations
along the specimen, as well as a more precise method for determining the moment of crack initiation
would help in reducing the scatter seen in the present data.

CONCLUSION

A hybrid experimental/numerical method for determining the heat dissipated from a uniforn I*
deforming specimen is presented. Both steady and non-steady problems can be handled with this tec;-
nique, and it does not require any particular boundary temperature conditions to be specified. Th,
method was applied in a study on the relationship between the irreversible work input and the heat
dissipated for a number of aluminum 6061-T6 specimens under fatigue loading. Its accuracy is sup-
ported by the excellent agreement between measured and computed temperatures, and its performance
during the initial transient stage is demonstrated by the good correlation between the fluctuations in
the measured hysteresis power W, and the heat dissipation rate Q which were obtained by independent
means. It was found that Q ranged between 85% to 95 % of W and the rate of energy absorbed by
the material U was invariably greatest at the start of the tests, inferring an initially higher rate of
damage accumulation. The summing of energies up to the point of crack initiation revealed that while
W, varied greatly with No, the total energy accumulated U, appeared relatively invariant over the
range of cycles considered. However, to adequately address the issue on whether U, is a material
parameter, more tests are needed for different loading conditions and higher number of cycles to
failure.
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Appendix A

PROGRAM TSOLVE "
C
C program for solving the inverse 1-D diffusion equation. Given
C temperature readings at at least three distinct locations on a
C fatigue specimen, the heat source is solved and compared to the
C the amount of irreversible work generated.
C

IMPLICIT REAL*8 (A-H,O-Z)
PARAMETER(MMAX-100, MXMAX-50, MTMAX-10)
DIMENSION X(MMAX,MMAX), Y(MMAX), RHS(MMAX)
DIMENSION XINV(MMAX,MMAX), AUX(MMAX,MMAX)
DIMENSION THETA(MXMAX)
DIMENSION XT(MXMAX),JT(MXMAX),JTX(MXMAX)
DIMENSION CC (MXMAX)
DIMENSION T(MTMAX), TI(MTMAX), T2(MTMAX) T3(MTMAX)
DIMENSION TEMPI(MTMAX),TEMP2(MTMAX),TEMP3(MTMAX)
DIMENSION AT(MTMAX), BT(MTMAX), CT(MTMAX)
COMMON //TAU, DELAY(MTMAX)
CHARACTER*79 LINE
CHARACTER*15 INFILI, INFIL2, INFIL3

WRITE(*,'(IX,42HENTER SOLUTION-SPECIFICATIONS FILE NAME: ,
READ(*, '(A)') INFILl

WRITE(* '(IX 42HENTER TEMPERATURE-MEASUREMENTS FILE NAME: , $)')
READ(*, (A)'5 INFIL2

WRITE(*,'(1X,42HENTER HYSTERYSIS FILE NAME:
READ(*, '(A) ') INFIL3

OPEN(UNIT-l FILE-INFILlSTATUS-'OLD')
READ(1,'(A79)') LINE
READ(l,*) NDTNDX XL XKRHO, CV
WRITE(*,' (/,X, A74)'5 LINE
WRITE(* '(3XI4,6XI4,4X,4GlO.3)') NDT,NDX,XL,XKRHO,CV
READ(1,'(A79)') LINE
READ (,*) NRTD
WRITE(*,' (/,lx A)') 'NUMBER OF TEMPERATURE MEASUREMENT POINTS'
WRITE(* '(X,14)') NRTD
READ (l,'(A79)') LINE
READ (1,*) (XT() I-1,NRTD)
WRITE(*,'(/,lX,A79)') LINE
WRITE(* ' (IX.8GI0.3)') (XT(1),-i,NRTD)
READ( I,(A79)') LINE
READ ( ,*) TSTART
WRITE(*,'(/,IX A79)') LINE
WRITE * '&(lX,GiO.3') TSTART
READ(1l,'(A79)') LINE
READ( l,*) TPULSE (DELAY(I),I-1,NRTD)
WRITE:*,'(/,lX,A79)') LINE
WRITE*' (1X,SG10. 3)') TPULSE, (DELAY(I),I-1,NRTD)
WRITE (*,*)

NT-NDX+l
MX-2*NT- 3

C
C ---- NDT number of time-marching steps between hysterysis data interval
C-- NDXnumber of mesh intervals along the solution length
C ---- XLlength of specimen
C ---- XKcoe fficient of thermal conduction
C ---- RHOdensity of the material
C --- CVspecific heat under constant volume
C ---- NRTDnumber of rtd stations
C ---- TSTARTsolution starting time
C --- NTnumber of finite difference nodes
C ---- MX size of the solution matrixC

IF(MX .CT. MMAX .OR. NT .GT. MXMAX .OR. NRTD .GT. MTMAX) THEN
WRITE(*, ' (A,A/A)') ' *** INSUFFICIENT MEMORY SPACE ALLOCATED,

+ 'CHECK ARRAY DECLARATIONS -- -',' PROGRAM TERMINATED ! ***'
STOP

ENDIF

C
C --- calculate grid positions where temperature measurements are available
C

IF(NRTD .LT. 3 .OR. NRTD .CT. MTMAX) THEN
WRITE(*, 10)

10 FORMAT(/' INVALID NUMBER OF TEMPERATURE MEASUREMENTS,',/
+ ' PROGRAM TERMINATED!')

STOP
ENDIF

C
C ---- convert dx, xl and xt to metres, and delay(i) to time units
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* C
DX-O OO1*DX
XL-O OO1*XL
DO 20 I-1,NRTD
XT(I)-O.OO1*XT(I)
DELAY(I )-TPULSE*DELAY(I)

20 CONTINUE
C
C--check whether the rtds are located sufficiently close to the FD nodes
C

DX-XL/FLOAT (NDX)
DO 510 I-l,NRTD
XJT-XT(I) /DX+l
FRACTXJT-XLJT - INT (XJT+O.001)
IF(ABS(FRACTXJT) .CT. 0.001) THEN
IRITE(*,'(/A.12,A)') -*** WARNING ***, RTD-',I,' DOES NOT

+ 'LIE EXACTLY ON A GRID POINT !
Xl-(INT(XJT-O. 5) .1)*DX
JT(I)-INT(X-JT-0. 5)+INT((X.JT-Xl)/DX+O. 5)

ELSE
JT(I)-INT(XJT+0.OO1)

ENDIF
510 CONTINUE

OPEN (UNIT-2 ,FILE-INFIL2 ,STATUS- 'OLD)
OPEN (UNIT-3 ,FILE-INFIL3 ,STATUS- 'OLD')

COPEN (UNIT-4 ,FILE-'TSOLVE.RES' ,STATUS-'NEW')

C--obtain first three rtd measurements
C

Tl(l)-O.
DO 42 I-i NRTD

TEMPl(I5-O.
42 CONTINUE
C
45 REAfl(2,*) T2(l), (TEMP2(I), 1-1,NRTD)

IF(TSTART .GT. T2 (1)) THEN
Tl(l)-T2(1)
DO 46 I-1 NRTD
TEMP1(1S-TEMP2(I)

46 CONTINUE
GOTO 45

END IF
READ(2,* T3(l),(TEKP3(l),l-l,NRZD)
DO 48 IiNRTD

Ti()Ti (1)+DELAY(I
T2 (I -T2 ()+DELAY I)
T3 (I) T3 (1) +DELAY (I

48 CONTINUE
C
C--read in time and hysterysis rate
C

TAUl-O.
IF(TSTART .NE. 0.) THEN

50 CONTINUE
READ(3,*) TAUMID, HYST
TAU2-2 .*(TAtJMID-TAUl)
IF((TSTART-TAU1) .GT. 0.00001) THEN
TAUI-TAU2
COTO 50

ENDIF
CONTINUE
CALL GETRTD(T,T1,T2 ,T3 ,TEMP1 ,TEMP2 ,TEMP3,AT,BT,CT,NRTD)
CALL FITPROF(TEMP1 ,XT,NRTD,THETA,NT,DX)

END IF
C

D TO-O.
TAU-TAUI

SUM-0.
SUM-O.

DTHMAX-O.
C
C--HYSThysterysis energy rate during the period between the
C taul and tau2

C ----8S~toalheat dissipated

C
100 CONTINUE

? -0.RRSUM-O.
C

READ(3,*.END-1OOO) TAUMID, HYST
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TAU2-2 .*TAUMID-TAUl
C

DTAU-TAU2 -TAUl
DT-DTAU/FLOAT (NDT)
IF(A.BS((DT-DTO)/DT) .GT. 0.001) THEN
A--2.*(l+DX*DX/(ALPHA*DT)
C-2.*(1. -DX*DX/ (APHA*DT))

C
C ------- invert matrix
C

IF(TAUI .NE. TSTART) THEN
WRITE(*,'(/A/)') CHANCE IN DT, RE-INVERTING MATRIX

ELSE
WRITE(*,'(/A/)') INVERTING MATRIX...

ENDIF
CALL FILU4AT(A,B,MX,MMAX,NRTD,X,JT)
CALL MATINV(MMAX,MX,X ,XINV ,AUX)

ENDIF
C

DO 700 JDT-l,NDT
TAU-TAU+DT

C
C ------- interpolate rtd readings at tau
C

CCALL GETRTD(T,T1,T2,T3 ,TEMP1,TEMI'2,TEMP3,AT,BT,CT,NRTD)
C-- -
C-

DO 620 I-2,NT-l
CC(I-l)-C*THETA(I)-THETA(I-1) -THETA(I+l)

620 CONTINUE
C
C ------- fill rhs
C

C CALL FILLRHS(NT,MX,NRTD,CC,RHS,JT,T)

C ------- calculate new temperatures and q
C
C ------- THETAcalculated temperatures
C

DO 640 1-1 NT-2
THETA(I+i)-O.

THETA(- +1)-THETA(I+l)+XINV(I ,J)*RHS(J)
630 CONTINUE
640 CONTINUE

XLAM2-0.
XLAMM-O.
QDOT-Q.
DO 650 J-l,mx

XLAM2-XLAM2+XINV IN- ,3 ) HjS(
XLAMM-XLAMM+XINVMX 1 :* H

650 CO TINU
C Q-Q+QDOT*DT

THETA(1) -T( l) 0.5*XLAM2
CTHETA Nl )T (NRTD)-0.5*XLAM4

C

DO 680 1-1, NRTD
DTH-THETA (JT(I) )-T(I)
IF(ABS(DTH) .GT. DTHMAX) DTHMAX-ABS(DTH)
ERRSUM-ERRSUM+DTH*DTH

680 CONTINUE

700 CONTINUE
ERRSUM-ERRSUM/ (NDT*(NRTD-2))
ERRSTD-SQRT(ERRSUM)

~SUM-ISUM+1YST*DTAU
ETA-% (HYST*DTAU)

WRITE(* ,(FlO.2, IX, F10.3, 4(lX,C1O.3))') TAUMID, ETA, USUI,
+ W UM DTHMAX, ERRSTD
WRITE(4,'(iX,F10 2' IX F10.3, 4(lX,GlO.3), 3X, 20(lH-))') TAUMID,

+ ETA, USUM, WSOM, 6THMAX, ERRSTD
WRITE(4, (10 (ix F? 2))') TAU (THETA(I), I-1,NT)
WRITE(4, (1 ( lX: F?.2)) (T(i), 1-1 ,NRTD)
TAU1-TAU
DTO-DT
GOTO 100
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1000 CONTINUE
AVETA-l00 .* (1.- USUM/WSUM)

WRIE(4'(4X ,G1O. 3,A)') -TOTAL ACCUMULATED ENERGY - ',USUM,

WRITE(4,'(/lX,A,GlO.3,A)') 'AVERAGE WORK-HEAT CONVERSION EFFICIENG
+Y ,* AVETA,'%
WRITE(*,'(41.,AlO.,A)') 'TOTAL ACCUMULATED ENERGY - ',USUM,

IJRITE(*,'(/lX,A,GlO.3,A)') 'AVERAGE WORK-HEAT CONVERSION EFFIGIENC
+Y - ', AVETA ' %
WRITE(*,'(/lX.A)') -*** RUN COMPLETED **
STOP
END

C SUBROUTINE GETRTD(TT1,T2,T3,TEMP1,TEMP2,TEMP3,AT,BT,CT,NRTD)

C Routine for interpoalatn the rtd readings.
C Parabolic interpolation is used when data spacing is less than or equal
C to 2 see. Otherwise, linear interpolation is used.
C

IMPLICIT REAL*8 (A-H O-Z)
DIMENSION T(NRTD), Ti(NRTD) T2(NRTD), T3 (NRTD)
DIMENSION TEMP1(NRTD) TEMP (NRTD), TEMKP3(NRTD)
DIMENSION AT(NRTD), IT(NRTD), CT(NRTD)
COMMON //TAU, DELAY( 1)

DATA LINEAR /.FALSE./

IF(TAU .GT. T3(l) .OR. (AT(l)+BT(l)+GT(l)) .EQ. 0.) THEN
IF(TAU .GT. T3(l)+l.E-6) THEN

DO 10 1-1 NRTD

T2 (I) TI
TEMP1 I) TEMP2 (I)TEMP2 (I) TEMP I)

10 CONTINUE
15 READ(2 * END-100O0 T3(l) (TEMP3(I),I-l,NRTD)

IF(TAU .6T. T3(l)) COTO 15
DO 20 1-1 NRTD

20 CONTINUE
ENDIF

C
C--re-evaluate polynomial coefficients
C

IF(T3(l)-T2(l) CGT. 2.) THEN
LINEAR-.TRUE.
DO 25 1-l,NRTD

BT(I )-(TEMP2 (I)-TEMP3(I))/(T2(I)-T-3(I))
CT (I) TEMP2( )-BT(I)*T2()

25 CONTINUE
ELSE

LINEAR-. FALSE.
Do 30 I-l,NRTD
AT(I)-( (T(I)-T3(I))* (TEMPl(I)-TEMP2(I) )-(Tl (I)-T2(l)) *

+ TEMPl(I-TEMP3R) )/(Tl (I) *Tl(I)- T (I)*T2(I)*
+ (Tl ()T() (Tl(I)* l(I)T3(I)*T3(I))*

+ T) (TEMI)-T(I)))2I-TI)(lI*ll-T()T())
+ (~hTI(I)-T2(I))

30 CON14N E TK1I-TI*lI*lI-TI*l
ENDIF

ENDIF
C
C--interpolate rtd readings
C

IF(LINEAR) THEN
DO 40 I-l,NRTD
T (I) -ET(I) *TAU+CT (I)

40 CONTINUE
ELSE

DO 50 I-1,NRTD
T(I)-AT(I)*TAU*TAU+BT(I)*TAU+CT(I)

50 CONTINUE
ENDIF

RETURN

1000 WRITE (*, END OF FILE IN READING RTD MEASUREMENTS'
WRITE(** PROGRAM TERMINATED 1
STOP
END
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SUBROUTINE FILU(AT(A,B,M,MMAX,NRTD,X,JT)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION X(MMAX,MMAX)
DIMENSION JT(NRTD)

C
NT-( M+3 )/2
DO 500 I-1,M

DO 510 J-1,M
X (I 3) -0.

510 CONTINUE
500 CONTINUE

C

11N-1).5

D NI-2,NT-3

XI, 
-1)-.XI, 1)-A

X I, I+1)-i.
520 CONTINUE

XINT-2,NT-3 :1

DO 530 -NT-2
XCI N 12-1)-.5

X 1T-,)-B

53 CNTI1NE-

DO 540 I-NT-,-

X(M,I )- 
.

540 CONTINUE
C XM,1M-2-l

DO 550 I-2NTD-1

550 CONTE~)~ ( )1 2

RETURN
END

SUBROUTINE MATINV (MMAX ,M ,A, AINV ,AA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(MMAXMMAX) AINV(MMAX,MMAX)
DIMENSION AA(MMA*,MMAX3

C PRINT*, 'A-'
C DO 500I-1iM
C WRITE(*,'(1X,9GlO.3)') (A(I,J),J-1,M)
C500 CONTINUE

DO 510 I-1,M
DO 520 J-1 M
AINV(I,J5-0.

520 CN U

510 CONTINME'

DO 530 K-2,M
DO 540 I-K,M

DO 550 KK-1,M
AINV(I,KK)-AINV(I,KK) -AINV(K..1,KK)*(A(I,K-1)/A(K-1 ,K-1))

550 CONTINUE
DO 560 J-KM
A(I,J)-A(I,J)-A(I ,K-1)*(A(K-1,J)/A(K-1 ,K-1))

560 CONTINUE
540 CONTINUE
530 CONTINUE

DO 570 KK-1,M
AINV (M,KK)-AINV(M,KK)/A(M,M)
DO 580 I-M-1,1,-l

DO 590 J-I+1,M
AINV (I,KX)-AINV(I,KK)-A(I,J)*AINV(J,KK)

590 CONTINUE
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AINV(I ,KK)-AINV(I ,KK)/A(I ,I)
580 CONTINUE
570 CONTINUE
C
C PRINT* *A^-I-'
C DO 600'1-1,M
C WRITE(*, (lX,9G10.3)') (AINV(I,J) ,J-I,M)
C600 CONTINUE

ANAX-O.
DO 610 I-1,M

DO 620 J-1,M
ATEST-O.
DO 630 K-l,M
ATEST-ATEST+AA(I ,K)*AINV(K ,J)

630 CONTINUE
IF(I .EQ. J) ATEST-ATEST-l.
IF ABS(ATEST) .CT. AMAX) AMAX-ABS(ATEST)

620 CONTINUE
610 CONTINUE

IF(AMAX CGT. i.E-10)
+ WRITE(*,'(A)') '*** WARNING, MATRIX INVERSION MAY BE',
+ INACCURATE **

C PRINT*I-'
C DO 640 1-1lM
C WRITE(*, (lX,9C10.3)') (A(I,J),J-l,M)
C640 CONTINUE
C

RETURN
END

C SUBROUTINE FILLRHS(NT,M,NRTDC,PHS,JT,T)

C Routine for filling in the RHS of the set of linear equations to be
C solve.
C

IMPLICIT REAL*8 (A-HO-Z)
DIMENSION C(NT), RHS(M), JT(NRTD), T(NRTD)

C
DO 500 I-2,NT-3

RHS I)-C(I)
500 CONTINUE

RHS Cl)-C(l)-T(l)
RHS (NT-2 )-C (NT- 2)- T(NRTD)

DO 510 I-2,NRTD-l
RHS(NT+JTCI)-3)-2.*T(I)

510 CONTINUE
RETURN
END

SUBROUTINE FITPROF(T ,XT ,M,THETA ,NT ,DX)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION T(M) ,XT(M)
DIMENSION THETA(NT)
DIMENSION X(3,3), XAUX(3,3), R(3), RAUX(3)

C
C
C--FIT PARABOLA
C

IF(M .EQ. 3) THEN
DO 520 1-1,3

RIS -T (I)
520 CONTINUE

ELSE
DO 530 I-l,M
XSUM-XSUM+XT(I)
X2SUM-X2SUM+XT I*X(I
X3SUM-X3SUM+XT I)*XT )*T(I

X4SUM-4SUM+T (I)*XT (I) *XT ()*TI
XTSUM-XTSUM+XT(I *T(I)
X2TSUM-X2TSUM+T( I )*XT(I )*T(I)
TSUM-TSUM+T (I)

530 CONTINUE
1) ~l-X4SUM
:12) -X3SUM

X13) -X2SUM
X21) -X3SUM
X X2SUM
X23-XSUM
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X 3 2 X2SUM

R I1 -X2TSUIR (2) 
-TMR (3 -TSUM

ENDIF

CALL MATSOL(3,3,X,R,XAUX,RAJX,1)
DO 540 I-l,NT

XX-(I- ) *DX
THETA(I )-R ( )*XX*XX+R(2)*XX+R(3)

540 CONTINUE
C

RETURN
END

SUBROUTINE MATSOL(M,MMAX,A,B,AA,BB, IOPT)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(MAX,MMAX), B(M)
DIMENSION AA(MMAXMNAX), BB(M)
DO 500 1-1,M

BB(I )-B(I)
DO 510 J- ,M

AA(I ,J)-A(I ,J)
510 CONTINUE
500 CONTINUE
C WRITE(*,*)
C DO 520 -I~M
C WRITE(*l(lX,<M>F6.2.3X,F6.2)') (A(I,J),J-1,M),B(I)
C520 CONTINUE

DO 530 K-2,M

C IF(IOPT .NE. 0) THEN

C ------- FIND OPTIMUM 'TOP' ROW
C
C PRINT* ''A"
C DO 540 I-iM
C WRITE(*, (l0F8.3)') (A(I.J),J-I,M),B(I)
C540 CONTINUE

Kl-K- 1
AMAX-ABS(A (K-1,K-1))
DO 550 KK-K ,M

IF(ABS(A(KK,K-1)) .GT. AMAX) THEN

AMAX-ABS (A(KK ,K. 1) )
ENDIF

550 CONTINUE
IF(Kl.NE.K-1) THEN

DO 560 I-K-1,M
ADUM-A(K-1. I)
AC K-1,I)-A(K , I)
A(Kl, t)-ADUM

560 CONTINUE
BDUM-B(K-1)

BK1)-B (Kl)

ENDI F
ENDIF

C PRINT*,' B:'
C DO 570 I-1,m
C WRITE(*,'(10F8.3)') (ACIJ),J-1,M),B(I)
C570 CONTINUE
C
C ---------------
C

DO 580 I-K,M

DO 590 J-K,M

590 CONTINUE
580 CONTINUE
C PRINT*,'C:
C DO 6001-Il M
C WRITE(*,l(lX,<M>F6.2,3X,F6.2)-) (A(I,J),J-1,M),B(I)
C600 CONTINUE
530 CONTINUE

D 10 I-j-1 1 - 1
DO 620 J-I+1,M

B(I)-B(I)-A(I ,J)*B(J)
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ozu UUN'INUEB(I)-B(I)/A(I,I)

610 CONTINUE
C
C DO 630 I-I,M
C WRITE(*,*) (A(I.J),J-1,M),B(I)
C630 CONTINUE
C

RMAX-O.
DO 640 I-1,M

S-0.
DO 650 J-I,M

S-S+AA(I ,J)*B(J)
650 CONTINUE

R-ABS(S-BB(I))
IF(ABS(R) .GT. RMAX) RMAX-R

C WRITE(*,-(lX,G12.5,10X,GI2.5)') B(I), R

640 CONTINUE
IF(RMAX .GT. 1.E-10)

+ WRITE(*,'(A)') *** WARNING, EQUATION SOLVER MAY BE',
+ INACCURATE ***'

RETURN
END
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figure 1 - Excperimental Setup
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